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Over the past 10 years chiral a-amino aldehydes have 
become very popular as synthetic precursors of biologi- 
cally active molecules.’ In this paper, we report on the 
stereoselective aldol reactions involving chiral NJV- 
diprotected a-amino aldehydes and chiral boron eno- 
lates.2 The aldol reaction between an acetate-derived 
enolate and a chiral aldehyde creates a new stereogenic 
center and two possible diastereoisomers (Scheme 1). 

In recent years two distinct ways of stereochemical 
control have been used: substrate control, in which the 
intrinsic stereochemical preference of the a-amino alde- 
hyde 1 determines the stereochemical outcome of the 
reaction, and reagent control, in which it is the chiral 
enolate’s stereochemical preference that governs the 
reaction stereochemi~try.~,~ When achiral lithium eno- 
lates or achiral enolsilanes were used, selectivities ranged 
from modest to good in favor of either the “Felkin-Anh” 
products (2-anti) or the “chelation” products (a-syn), 
depending on the nitrogen protecting groups (R1, R2) and 
on the Lewis acid p r o m ~ t e r s . ’ ~ ~ ~ - l ~  Only two types of 
chiral enolates were reported to control the stereochem- 
istry of the addition to a-amino aldehydes 1 (R1 = R2 = 
Bn), with selectivities ranging from fair (de = 60-92%)” 
to good (de = 86.6-93%).4aJ2J3 

We have exploited transition state computer modeling 
to develop two new boron reagents (3, X = C1; 4, X = Br; 
Scheme 2) which allow the enantioselective synthesis of 
ketone-derived anti (7448% ee; R = Me; R1 = alkyl, aryl) 
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and unsubstituted aldols (55-76% ee; R = H; R’ = alkyl, 
aryl)14a and thioester-derived anti (298% ee; R = Me, R1 
= SBut) and unsubstituted aldols (87-97% ee; R = H, 
R1 = S B U ~ ) . ~ ~ ~  We have also recently reported that boron 
enolates derived from 4 or ent-4 (X = Br) show a high 
degree of reagent control in reactions with chiral 
a1deh~des.l~‘ 

Here we report the high efficiency of this reaction 
involving a-amino aldehydes and its application to the 
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Table 1. Aldol Addition Reactions of Chiral Boron 
Enolates with Chiral a-Amino Aldehydes 

Entry R L Substrates 3,4-anri WSyn Products ';, 
1 Bn L' 5a 98.6 1.4 6a 75 
2 Bn L" 5a 3.2 96.8 7a 70 
3 M e L ' S  
4 Me L" Sb 
5 BBU L' 5c 
6 s-Bu L" 5c 
7 CPr L* W 

8 bPr Le' W 
9 CBu L' Se 

10 CBU L" 5e 

98.5 
3.7 
98.2 

4.6 
>loo 
3.5 
r l O O  

2.5 

1.5 6b 
96.3 7b 
1.8 6c 
95.4 7c 
< l a  6d 
96.5 7d 
c1 a 6e 
97.5 70 

80 
75 
75 
71 
80 
72 
78 
71 

a Not detected in the crude reaction mixture. 

total synthesis of (3S94S)-statine 12,5aJ0J1aJ5 the main 
component of pepstatine, which is a specific inhibitor of 
aspartic  protease^.^^^^^ NJV-Dibenzylamino aldehydes 5 
were prepared from the corresponding natural a-amino 
acids according to the procedure described by R e e t ~ . ~ ~  
With the chiral boron enolates of tert-butyl thioacetate 
derived from ent-4 we are able to overcome the inherent 
substrate preference for the Fellsin-type product (3 ,hnt i )  
observed with achiral enolates. It is worth noting that 
in the "matched" cases the 3,4anti:3,4-syn diastereomeric 
ratios are 198.2:1.8, while in the "mismatched" cases the 
3,4-syn:3,4-anti ratios are 195.4:4.6. These results prove 
that it is possible to obtain either the 3,4anti (6) or the 
3,4-syn (7) adduct with very high diastereoselectivity just 
by changing the chiral boron ligand configuration [L* 
derived from (-1-menthone, L** derived from (+)-men- 
thonel (Scheme 3, Table 1). 

Although the aldol products are contaminated by small 
amounts of the unwanted diastereomer (0-4.6%), they 
can be easily purified by flash chromatography. The 
ratios of the mixtures 6/7 were determined by 13C-NMR 
analysis of the crude reaction mixtures after having 
previously fully characterized each diastereomer. We 
have determined the relative and absolute configuration 
of the aldol products by chemical correlation in a couple 
of cases ( s e e  below). We have also determined by these 
chemical correlations that both 6- and 7-type compounds 
are enantiomerically pure and, therefore, that in the aldol 
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Key: (a) 1 N NaOH in THF; (b) CHzNz in MeOH; (c) 
HC02NH4, Pd-C, MeOH, reflux; (d) AczOPy; (e) concd HC1, 80 
"C, 3 h; (0 DOWEX 50x8-100 (acid form). 

reaction the substrates do not suffer any erosion of 
configurational integrity. The 3,4-syn aldol adducts 7c 
and 7e have been correlated with the known lactams 91S 
and ll,15a respectively, the latter leading in two steps to 
the natural B-hydroxy y-amino acid statine 12. Aldol 
adducts 7c and 7e were saponified and esterified with 
diazomethane to give methyl esters 8 and 10 in good yield 
(75% and 80%, respectively). Debenzylation of the 
-NBnZ group was achieved using a procedure originally 
introduced for the deprotection of monobenzylamines 
(HC02NH4, Pd-C, MeOH, reflux).17 Under these reac- 
tion conditions the hydroxy amino ester intermediate 
undergoes cyclization, generating the y-lactam, which is 
acetylated to give 9 (in the isoleucine series). Compound 
9 is obtained in 85% overall yield from 8. The [ a l ~  values 
of lactams 9 and 11 are in good agreement with those 
reported in the l i t e r a t ~ r e . l ~ ~ J ~  Although the ring opening 
of 11 under acidic conditionslse has been reported to 
fail,15b we have found that when concentrated hydrochlo- 
ric acid at 80 "C is used lactam 11 is converted into 
statine hydrochloride in good yield. The salt was dis- 
solved in water and loaded onto an ion exchange column 
to deliver the free amino acid statine 12 as a white solid 
(Scheme 4). 
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